give colorless needles of **9**, mp 73-74°, nmr consistent. Anal. (C₄H₆Cl₃NS) C, H, N, S.

2,2-Dimethylthiazolidine Hydrochloride (10).—Thiol 1 (16.84 g, 148 inmoles) was dissolved in MeOH (25 ml) and excess Me₂-CO (300 ml), and the mixture was heated under reflux for 8.5 hr. Evaporation of solvent gave a residue (20.3 g), mp 162–166°, which was crystallized three times from MeOH by addition of Et₂O to give 10 as colorless needles (8.6 g, 38%), having constant mp 170–171.5° (lit.^{3d} 164–165°). Anal. (C₅H₁₂CINS) C, H, S.

2-Benzoylthiazolidine Hydrochloride (11).—Thiol 1 (5.50 g, 48.5 mmoles) and phenylglyoxal hydrate (7.60 g, 50 mmoles) were heated together at ca. 85° for ca. 5 min; the mixture then was dissolved in MeOH (30 ml) and Et₂O (120 ml) was added to incipient turbidity. Cooling gave colorless 11 (4.4 g, 39%), mp 151-153° dec. Recrystallization three times from MeOH by addition of Et₂O gave 11 with a melting point of 151.5-152.5° dec, nmr consistent. Anal. (C₁₀H₁₂CINOS) C, H, N, S.

Spiro[2,3-dihydroindole-3,2'-thiazolidine]-2-one Hydrochloride (12).—Finely powdered isatin (10.95 g, 75 mmoles) was slowly added to thiol 1 (8.5 g, 75 mmoles) in *i*-PrOH (80 ml) to give a red mixture which, after being stirred for 24 hr at *ca*. 25°, became pale brown. Filtration separated pale brown 12 (15.4 g, 85%), mp 200-203° dec. A sample was recrystallized three times from

MeOH by addition of Et₂O and had a constant melting point of 203-204° dec; ir (KBr), 2370, 1735 (amide C==O) cm⁻¹. Anal. ($C_{10}H_{11}ClN_2OS$) C, H, N, S.

p-5,5-Dimethylthiazolidine-4-carboxylic Acid (13).—p-Penicillannine (35 g, 235 mmoles)¹⁰ was dissolved in 45% aqueous HCHO (200 ml, 3.0 moles). Within α . 5 min, solid started to separate. The mixture was stirred for ca. 20 hr. Filtration then removed the colorless intermediate 14 (29 g, 69%), mp 111–112°, after a wash with dioxane then Et₂O and drying over silica gel; ir (KBr), 3420, 2990, 2750, 1635, 1475, 1400, 1380, 1360, 1340, 1135 (s), 1105, 1010, 830, and 705 cm⁻¹. Conversion to the thiazolidine 13, generally in ca. 75% yields, was achieved by dissolving the intermediate 14 in H₂O (10 ml/g of 14) and adding EtOH (4 vol) to incipient turbidity, then cooling. The thiazolidine 13 had mp 195–195.5° dec,¹¹ ir and nmr consistent.

(10) Kindly supplied by Dr. Elmer Alpert, Merck Sharp and Dohme Research Laboratories, West Point, Pa.

(11) Reference 4, p 958, reports mp 196-197° dec. The melting point reported there for the L form was 193-194°; a later patent abstract indicates this preparation was from L-penicillamine rather than the hydrochloride, but the identity of the procedures suggests an error in the abstract [J. H. Hunter and B. E. Leach, U. S. Patent 2,480,079 (1949); Chem. Abstr., 44, 2569 (1950)].

Quaternary Thiazolylpyridinium Salts. Oral Hypoglycemic Agents

GRETCHEN E. WIEGAND, VICTOR J. BAUER, S. R. SAFIR,

Organic Chemical Research Section

D. A. BLICKENS, AND S. J. RIGGI

Department of Metabolic Chemotherapy, Lederle Laboratories, A Division of American Cyanamid Company, Pearl River, New York 10965

Received May 1, 1969

A series of quaternary 4-(thiazolyl)pyridinium salts has been synthesized. Blood glucose concentration of normal mice was decreased following oral administration of these compounds.

A number of azolylpyridinium salts, including members of the pyrazolyl-,¹ isoxazolyl-,²⁻⁴ 1,2,4-oxadiazolyl-,⁵ and oxazolylpyridinium⁶ salt families, have been found to induce hypoglycemia in laboratory animals. As a further development of this series, we have investigated the replacement of the five-membered ring with still other heterocycles. We describe herein the synthesis of some novel 4-(thiazolyl)pyridinium salts. The choice of substituents was influenced by structure-activity correlations developed in the pyrazolylpyridinium salt series.¹

The 4-(thiazolyl)pyridinium salts 10-29 were prepared from the thiazolylpyridine bases 4-9 by quaternization with the appropriate alkyl halide. The base 4 was prepared as described by Wallenfels and Gellrich.⁷ The bases 5, 7, and 8 were prepared by modification of this procedure. Thus, reaction of thioisonicotinamide with 3-bromo-2-butanone gave 5, reaction of thioacetamide with 1^8 gave 7, and reaction of cyclopropane-

(7) K. Wallenfels and M. Gellrich, Ann. Chem., 621, 210 (1959).

thiocarboxamide with 1 gave 8. The bases 6 and 9 were prepared by fusion of the amido ketones 2^5 and $3,^9$ respectively, with P_2S_5 using a modification of the procedure of Gabriel¹⁰ as described by Ott, *et al.*,¹¹ for the preparation of arylthiazoles.

In the nmr spectra of the 4-(thiazolyl)pyridine bases 4-9, the pyridyl protons appear as two doublets at δ 7.73-7.76 and 8.60-9.01. Upon quaternization, these signals shift to new values of δ 8.33-8.53 and 8.83-9.18. These changes, a downfield displacement of both doublets, as well as a smaller separation between chemical shifts, were found to be diagnostic of pyridine quaternization in our earlier study of pyrazolyl-pyridinium salts.^{1,12} Spin-decoupling experiments demonstrate that the quaternary methyl of 11 is coupled with the α -pyridyl protons, further confirming that alkylation has occurred on the pyridyl nitrogen.

Hypoglycemic Activity.¹³—Saline solutions or 0.5% aqueous carboxymethylcellulose suspensions of test compounds were administered by gavage to male CF-1 mice (Carworth Farms, 25–30 g) at doses of 0.5–1.5 mmol/kg; controls received an equal volume of vehicle.

⁽¹⁾ V. J. Bauer, H. P. Dalalian, W. J. Fanshawe, S. R. Safir, E. C. Tocus, and C. R. Boshart, J. Med. Chem., 11, 981 (1968).

⁽²⁾ V. J. Bauer, W. J. Fanshawe, H. P. Dalalian, and S. R. Safir, *ibid.*, 11, 984 (1968).

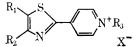
⁽³⁾ D. A. Blickens and S. J. Riggi, Toxicol. Appl. Pharmacol., 14, 393 (1969); Diabetes, in press.

⁽⁴⁾ S. J. Riggi, D. A. Blickens, and C. R. Boshart, *ibid.*, **17**, 646 (1968).
(5) W. J. Fanshawe, V. J. Bauer, S. R. Safir, D. A. Blickens, and S. J. Riggi, *J. Med. Chem.*, **12**, 381 (1969).

⁽⁶⁾ G. E. Wiegand, V. J. Bauer, S. R. Safir, D. A. Blickens, and S. J. Riggi, *ibid.*, **12**, 943 (1969).

⁽⁸⁾ L. Polo-Friz, Farmaco, Ed. Sci., 18, 972 (1963).

⁽⁹⁾ S. van der Meer, H. Kofmann, and H. Veldstra, Rec. Trav. Chim. Pays-Bas, 72, 236 (1953).


⁽¹⁰⁾ S. Gabriel, Chem. Ber., 43, 134 (1910).

⁽¹¹⁾ D. G. Ott, F. N. Hayes, and V. N. Kerr, J. Amer. Chem. Soc., 78, 1941 (1956).

⁽¹²⁾ V. J. Bauer, H. P. Dalalian, and S. R. Safir, J. Med. Chem., 11, 1263 (1968).

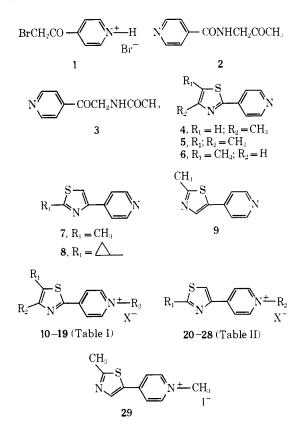

⁽¹³⁾ Technical assistance of Mr. F. Locke, Mr. H. Siegriest, and Miss 1, Will is greatly appreciated.

TABLE 1 4-(2-Thiazolyl)pyridinium Sauts

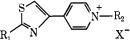
						**			% decrease in blood glucoso ^d		
		•			Mp, °C	Recrystn	12	4 . 1	0.5	1.5	<i>c</i> 1 1
Compd	Ra	\mathbf{R}_{2}	R2	Х	dee	solvent	Formula	Analyses	mmol/kg	mmol/kg	Comrol
10	П	CH_{4}	CH_{a}	I.	218	<i>i</i> -PrO∏∏₂O	$C_{10}H_{11}IN_{2}S$	C, H, I, N	$33 \pm 18^{\circ}$	$61 = 19^\circ$	9 ± 8
11	11	CH_a	CH_3	CI	243 - 244	MeCN	$C_{10}H_{11}ClN_2S$	C, H, Cl, N, S	33 ± 3^{b}	$90 = 2^{c}$	1 4-1
12	П	CH_3	C_2H_5	\mathbf{Br}	197 - 199	MeCN	$\mathrm{C}_{11}\mathrm{H}_{13}\mathrm{BrN}_2\mathrm{S}$	C, H, Br, N, S	30 ± 4	84 = 2	12 the 5
13	П	CH_{a}	n-C ₃ H ₇	Br	199-201	MeCN	$\mathrm{C}_{12}\mathrm{H}_{13}\mathrm{BrN}_2\mathrm{S}$	C, H, N, S; Br ^a	$^{\prime}28 \pm 5$	65 ± 7	1 . 1 3
14	11	$C\Pi_a$	CH₂=CHCH₂	Cl	188 - 189	MeCN	$C_{12}H_{13}ClN_2S$	C, H, Cl, N, S	$64~\pm~12$	60 ± 18	31 ± 7
15	11	CH_{a}	$CH_2 = CHCH_2$	Br	200-201	MeCN	$\mathrm{C}_{12}\mathrm{H}_{13}\mathrm{BrN}_{2}\mathrm{S}$	C, H, Br, N, 8			
16	II	CH_{a}	CH₂	\mathbf{Br}	223 - 224	MeCN	$\mathrm{C}_{13}\mathrm{H}_{15}\mathrm{BrN}_{2}\mathrm{S}$	C, H, Br, N, S	$24~\pm 3$	49 ± 16	1 ± 3
17	II	CH_{3}	$\mathrm{C_2H_5OC_2H_4}$	CI	89-92	Me ₂ CO	$\begin{array}{c} C_{13}H_{17}ClN_2OS \\ 0_{-5}H_2O \end{array}$	C, H, N, S; CF	46 = 7	84 ± 5	1 = 3
18	CH_a	11	CH_3	Ι	238 - 239	EtOH-Et ₂ O	$C_{10}H_{11}IN_2S$	C, H, I, N, S	56 ± 15	82 ± 5	15 ± 7
19	CH_{a}	CH_{a}	CH_3	Cl	225226	MeCN-Et₂O	${ m C_{11}H_{13}ClN_2S} - 0.25 { m H_2O}$	C, H, N, S; Cl/	51 ± 8	64 ± 7	-l -t: G

^a Values are means \pm standard errors of four to six mice. Maximal reductions in blood glucose concentrations 3 or 5 hr after dosing are expressed as per cent decrease from predose values. Control animals were dosed orally with vehicle. Average predose blood glucose concentration for 74 control mice was 123 \pm 2 mg/100 ml. ^b 0.4 mmol/kg. ^c 0.8 mmol/kg. ^d Br: calcd, 26.7; found, 27.2. ^c CI: calcd, 12.1; found, 12.8. \neq CI: calcd, 14.5; found, 15.2.

Blood samples (0.05 ml) obtained from retrobulbar plexuses 3 and 5 hr after dosing were assayed⁴ for blood glucose using the method of Hoffman¹⁴ as adapted for the Technicon AutoAnalyzer. Results are included in Tables I and II. Blood glucose concentration was significantly reduced following administration of the 4-(thiazolyl)pyridinium salts. The average decreases from control of 37 ± 4 (20–28) and $63 \pm 7\%$ (10–19) at a dose of 1.5 mmol/kg suggest that the 4-(4-thiazolyl)pyridinium salts are less active than the 4-(2thiazolyl)pyridinium compounds.

Experimental Section¹⁵

4-(4,5-Dimethyl-2-thiazolyl)pyridine (5).--A mixture of 5 g (0.036 mol) of thioisonicotinamide, 8.8 g (0.058 mol) of 3-bromo-2-butanone, and 50 ml of EtOH was heated under reflux for 6 hr and concentrated under reduced pressure to dryness. A suspension of the solid residue in 50 ml of H_2O was made alkaline (1 N NaOH) and extracted (CHCl₃). The CHCl₃ solution was dried (MgSO₄) and concentrated onder reduced pressure to a solid residue which was sublimed at 80° (0.05 nm) to give 1.9 g (30%) of off-white crystals. Recrystallization (EtOH-H₂O) gave colorless crystals: mp 101–102°; uv, 318 m μ (ϵ 15,410); nmr (DMSO- d_6), δ 2.35 and 2.41 (s, 3 each, CH₃), 7.76 and 9.01 (d, J = 6 cps, 2 each, pyridyl-H). Anal. (C₁₀H₁₀N₂S) C, H, N, S. 4-(5-Methyl-2-thiazolyl)pyridine (6).--A mixture of 2 g (0.011 mol) of isonicotinamidoacetone (2)⁶ and 3 g (0.013 mol) of P₂S₅ was heated at 110-140° until gas evolution ceased. The oily residue was warmed with excess 1 N KOH and extracted (CHCl₃). The CHCl₃ solution was dried (MgSO₄) and concentrated under reduced pressure to 1.5 g (80%) of tan crystals. Sublimation at 65° (0.05 mm) gave yellow usedles: mp 88–90°. Anal. (C₉H₉N₂S) C, H, N.


4-(2-Methyl-4-thiazolyl)pyridine (7).--A mixture of 18.2 g (0.27 mol) of thioacetamide, 37.8 g (0.135 mol) of 4-bromoacetylpyridine hydrobromide (1),⁸ and 1 l. of MeOH was heated under reflux for 0.5 hr and concentrated under reduced pressure. A solution of the solid residue in 100 ml of H₂O was made alkaline (1 N NaOH) and extracted (CHCl₃). The CHCl₃ solution was dried (MgSO₄) and concentrated under reduced pressure to a yellow solid. Recrystallization (C₆H₆-cyclohexane) gave 20 g (84%) of tan crystals, mp 79-80°. Anal. (C₈H₈N₂S) C, H, N, S.

4-(2-Cyclopropyl-4-thiazolyl)pyridine (8), prepared from cyclopropanethiocarboxamide and 4-bromoacetylpyridine hydrobronuide $(1)^8$ using the method described above for the synthesis of 7, was obtained as a colorless oil by evaporative distillation at 100° (0.1 mm), and was converted to the quaternary salt 28 (Table II) without further purification.

4-(2-Methyl-5-thiazolyl)pyridine (9).--A mixture of 1.5 g (0.084 mol) of 4-acetylamiuoacetylpyridine (3)⁹ and 2.3 g (0.104 mol) of P_2S_5 was heated at 110-140° until the evolution of H_2S ceased. The solid mass was heated with excess 1 N KOH and the mixture was extracted (CHCl₄). The CHCl₃ solution was

⁽¹⁵⁾ Melting points were determined in a Hershberg apparatus and are uncorrected. Microanalyses were performed by Mr. L. M. Brancone and staff. Where analyses are indicated only by symbols of the elements, analytical results obtained for those elements were within $\pm 0.4\%$ of the theoretical values. Uv spectra were determined in MeOH solution with a Cary 11 spectrophotometer, ir spectra were recorded on KBr disks with a Perkin-Ehner Model 21 intrared spectrophotometer, and nun spectra were determined with a Varian Associates A-60 spectrometer with TMS or DSS as an internal standard by Mr. W. Fulmor and staff.

TABLE II 4-(4-THIAZOLYL)PYRIDINIUM SALTS

				Mp, °C	Recrystn			1.0	se in blood glucose ^a 1.5
\mathbf{Compd}	\mathbf{R}_1	\mathbf{R}_2	\mathbf{x}	dec	solvent	Formula	Analyses	mmol/kg	mmol/kg Control
20	${ m CH}_3$	CH_3	Cl	228 - 231	EtOH-Et ₂ O	$\mathrm{C_{10}H_{11}ClN_2S}$	C, H, Cl, N, S	30 ± 11^{b}	$64 \pm 12^{\circ}$ 9 ± 4
21	CH_3	C_2H_5	\mathbf{Br}	201 - 202	MeCN	$\mathrm{C}_{11}\mathrm{H}_{13}\mathrm{BrN}_{2}\mathrm{S}$	C, H, Br, N, S	23 ± 6	$37 \pm 8 \qquad 9 \pm 3$
22	CH_3	n-C ₃ H ₇	Br	121-123	Me_2CO	${ m C_{12}H_{15}BrN_2S} \cdot 0.25{ m H_2O}$	C, H, Br, N, S	39 ± 7	$32 \pm 5 \qquad 4 \pm 8$
23	CH_3	$CH_2 = CHCH_2$ CH_3	Cl	165 - 167	MeCN	$\mathrm{C_{12}H_{13}ClN_2S}$	C, H, Cl, N, S	37 ± 9	$37 \pm 14 \qquad 2 \pm 8$
24	CH₃	$CH_2 = CCH_2$	Cl	185-186	MeCN	$\mathrm{C}_{13}\mathrm{H}_{15}\mathrm{ClN}_{2}\mathrm{S}$	C, H, Cl, N, S	18 ± 9	$31 \pm 5 -6 \pm 4$
25	CH_3	$C_6H_5CH=CHCH_2$	Cl	144-146	Me ₂ CO–MeCN	${ m C_{18}H_{17}ClN_2S},\ 0.5{ m H_2O}$	C, H, Cl, N, S	$46~\pm~2$	36 ± 6 4 ± 8
26	CH_3	CH2	\mathbf{Br}	189 - 191	EtOH-Et ₂ O	$\mathrm{C_{13}H_{15}BrN_{2}S}$	C, H, Br, N, S	30 ± 6	34 ± 5 9 ± 3
27	${\rm CH}_{3}$	$C_2H_5OC_2H_4$	Cl	79-80	${\rm Me_2CO}$	$\mathrm{C_{13}H_{17}ClN_2OS}$	C, H, Cl, N, S	41 ± 13	$50 \pm 10 - 5 \pm 5$
28	\succ	CH_3	Ι	233 - 234	MeCN	$\mathrm{C_{12}H_{13}IN_{2}S}$	C, H, I, N, S	$64~\pm~18$	13 ± 6

^a Values are means \pm standard errors of four to six mice. Maximal reductions in blood glucose concentrations 3 or 5 hr after dosing are expressed as per cent decrease from predose values. Control animals were dosed orally with vehicle. An increase in blood glucose is indicated by a negative sign (-). Average predose blood glucose concentration for 74 control mice was $123 \pm 2 \text{ mg}/100 \text{ ml}$. ^b 0.8 nmol/kg.

dried (MgSO₄) and concentrated under reduced pressure to 1.2 g (81%) of pale yellow crystals. Sublimation at 65° (0.05 mm) gave hygroscopic colorless needles: mp <30°. Anal. (C₉H₈N₂S) C, N, S; H: caled, 4.58; found, 5.04.

1-Methyl-4-(4-methyl-2-thiazolyl)pyridinium Chloride (11).— A mixture of 10.5 g (0.06 mol) of 4-(4-methyl-2-thiazolyl)pyridine (4)⁷ and 10 ml of MeCl was heated at 120° for 18 hr in a glasslined steel bomb. The excess MeCl was allowed to evaporate and the residue was recrystallized (MeCN) to give 10.2 g (75%) of yellow crystals: mp 242-244° dec; ir (KBr), 6.10 μ ; uv, 348 m μ (ϵ 17,460), 245 (6580); nmr (D₂0), δ 2.58 (d, J = 1 cps, 3, CCH₃), 4.48 (s, 3, NCH₃), 7.64 (d, J = 1 cps, 1, thiazolyl-H), 8.41 and 8.87 (d, J = 7 cps, 2 each, pyridyl-H), Anal. (C₁₀H₁₁-ClN₂S) C, H, Cl, N, S.

1-Methyl-4-(2-methyl-5-thiazolyl)pyridinium Iodide (29).---A

mixture of 1.8 g (0.10 mol) of 9, 5 ml of MeI, and 30 ml of EtOH was heated under reflux for 1 hr and concentrated under reduced pressure to dryness. The solid residue was recrystallized (MeCN-Et₂O) to give 2.0 g (62%) of yellow crystals, mp 253-255° dec. *Anal.* (C₁₀H₁₁IN₂S) C, H, N.

Blood glucose concentration of mice 5 hr after oral administration of 1.0 or 1.5 mmol/kg of **29** was decreased 33 ± 5 and $26 \pm 6\%$, respectively; an increase of $4 \pm 5\%$ occurred in saline control mice.

4-(Thiazolyl)pyridinium salts 10-28 were prepared by reaction of the requisite thiazolylpyridine 4-9 with an alkyl halide either in a bomb at 100-120° for 4-18 hr without solvent (as for 11, above) or in EtOH (as for 29, above) under reflux. Properties are listed in Tables I and II.